If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6-3t^2=0
a = -3; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-3)·6
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-3}=\frac{0-6\sqrt{2}}{-6} =-\frac{6\sqrt{2}}{-6} =-\frac{\sqrt{2}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-3}=\frac{0+6\sqrt{2}}{-6} =\frac{6\sqrt{2}}{-6} =\frac{\sqrt{2}}{-1} $
| 4n^2=-7 | | 8x-10+10x=-3+32= | | F(x)=10(0.8)x | | 17/20=t+-13/20 | | 10/y=11/7 | | 5(x-2)=(-x+2)3 | | 5x+10=2x-17 | | 156=-5x+7(-6x-18) | | z/4+2=−58 | | 3y+3=20 | | z4+2=−58 | | 2x3-3x2+5=0 | | x*15=x/3,5 | | 2(5x-5)+x=100 | | k/8+4=15 | | -12x+37=-10x-15-6x | | 2×-3y+10=0 | | -4y-24=-8(y+8) | | 16x+20=21x | | 3(x-7)=5x-5 | | 2(5x-3)+x=137 | | 2y+1=2y+8 | | 48+16x+x2=180 | | -3/5*x-7/10*x+1/2*x=-56 | | -7(w+2)=5w-38 | | 2.75(89.09-1.18y)+3.25y=245 | | 2.75(89.09-1.18)+3.25y=245 | | -91=-7(x+8) | | 3(y+3)=20 | | 8(4a-8)=-288 | | x/6=-5/8 | | 5h+3=1 |